Additive Sweeping Preconditioner for the Helmholtz Equation

نویسندگان

  • Fei Liu
  • Lexing Ying
چکیده

We introduce a new additive sweeping preconditioner for the Helmholtz equation based on the perfectly matched layer (PML). This method divides the domain of interest into thin layers and proposes a new transmission condition between the subdomains where the emphasis is on the boundary values of the intermediate waves. This approach can be viewed as an effective approximation of an additive decomposition of the solution operator. When combined with the standard GMRES solver, the iteration number is essentially independent of the frequency. Several numerical examples are tested to show the efficiency of this new approach.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sweeping Preconditioner for the 3 D 1 Helmholtz Equation

This paper introduces the recursive sweeping preconditioner for the numerical solu4 tion of the Helmholtz equation in 3D. This is based on the earlier work of the sweeping preconditioner 5 with the moving perfectly matched layers (PMLs). The key idea is to apply the sweeping precondi6 tioner recursively to the quasi-2D auxiliary problems introduced in the 3D sweeping preconditioner. 7 Compared ...

متن کامل

Recursive Sweeping Preconditioner for the Three-Dimensional Helmholtz Equation

This paper introduces the recursive sweeping preconditioner for the numerical solution of the Helmholtz equation in three dimensions. This is based on the earlier work of the sweeping preconditioner with the moving perfectly matched layers. The key idea is to apply the sweeping preconditioner recursively to the quasi-two-dimensional auxiliary problems introduced in the three-dimensional (3D) sw...

متن کامل

Sweeping Preconditioner for the Helmholtz Equation: Hierarchical Matrix Representation

The paper introduces the sweeping preconditioner, which is highly efficient for iterative solutions of the variable-coefficient Helmholtz equation including veryhigh-frequency problems. The first central idea of this novel approach is to construct an approximate factorization of the discretized Helmholtz equation by sweeping the domain layer by layer, starting from an absorbing layer or boundar...

متن کامل

A sweeping preconditioner for Yee’s finite difference approximation of time-harmonic Maxwell’s equations

This paper is concerned with the fast iterative solution of linear systems arising from finite difference discretizations in electromagnetics. The sweeping preconditioner with moving perfectly matched layers previously developed for the Helmholtz equation is adapted for the popular Yee grid scheme for wave propagation in inhomogeneous, anisotropic media. Preliminary numerical results are presen...

متن کامل

Double sweep preconditioner for optimized Schwarz methods applied to the Helmholtz problem

This paper presents a preconditioner for non-overlapping Schwarz methods applied to the Helmholtz problem. Starting from a simple analytic example, we show how such a preconditioner can be designed by approximating the inverse of the iteration operator for a layered partitioning of the domain. The preconditioner works by propagating information globally by concurrently sweeping in both directio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Multiscale Modeling & Simulation

دوره 14  شماره 

صفحات  -

تاریخ انتشار 2016